#### Permutation tests

Fabian Pedregosa October 3, 2017

Data Science Learn2Launch, UC Berkeley

#### Announcements

#### • Next week is the first presentation!

- 1. 10 min presentation (by teams) + 5 min questions
- 2. At least: objective of the project, dataset, exploratory analysis.
- Server, more CPUs, GPUs, etc 
   register at AWSEducate: https://www.awseducate.com/Registration. If this is not enough, come and see me.
- Office hours: me 3pm-5pm SDH 421, Bowen Mondays on demand.

#### Structure of this lecture

- Me: explain the method of permutation tests.
- You: solve problem based on this method.
- You: volunteer presents his solution, gets +0.5 point bonus (out of 10) on final grade.
- Me: Introduction to supervised learning. Logistic regression.

#### **Permutation tests**

#### Motivation

We will answer the burning question

# Does drinking beer make you more attractive to mosquitos?



#### OPEN ORCESS Freely available online



## Beer Consumption Human Attractiveness to Malaria Mosquitoes

#### Thierry Lefèvre<sup>1</sup>\*, Louis-Clément Gouagna<sup>2,3</sup>, Kounbobr Roch Dabiré<sup>3,4</sup>, Eric Elguero<sup>1</sup>, Didier Fontenille<sup>2</sup>, François Renaud<sup>1</sup>, Carlo Costantini<sup>2,5</sup>, Frédéric Thomas<sup>1,6</sup>

1 Génétique et Evolution des Maladies Infectieuses, UMR (ONES/IRD 2724, Montpellier, France, 2 Caractérisation et Contrôle des Populations de Vecteurs, IRD/UR 016, Montpellier, France, 3 Institut de Recherche en Science de la Santé, Bobo-Dioulasso, Burkina Faso, 4 Laboratoire de Parasitologie et d'Entomologie Médicale, Centre Muraz, Bobo-Dioulasso, Burkina Faso, 5 Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale, Yaoundé, Cameroun, 6 Institut de Recherche en Biologie Végétale, Université de Montréal, Canada

#### Abstract

Background: Malaria and alcohol consumption both represent major public health problems. Alcohol consumption is rising in developing countries and, as efforts to manage malaria are expanded, understanding the links between malaria and alcohol consumption becomes crucial. Our aim was to ascertain the effect of beer consumption on human attractiveness to malaria mosquitoes in semi field conditions in Burkina Faso.

#### Experiment



| Beer                 | Water               |
|----------------------|---------------------|
|                      |                     |
| 27 19 20             | 21 19 13            |
| 20 23 17             | 22 15 22            |
| 21 24 31             | 15 22 20            |
| 26 28 20             | 12 24 24            |
| 27 19 25             | 21 19 18            |
| 31 24 28             | 16 23 20            |
| 24 29 21             |                     |
| 21 18 27             |                     |
| 20                   |                     |
| $mean_{beer} = 23.6$ | $mean_water = 19.2$ |

 $\mathsf{mean}_{\mathsf{beer}} - \mathsf{mean}_{\mathsf{water}} = 4.4$ 

Is the difference of 4.4 sufficient to claim that drinking beer makes you more attractive to mosquitos?

What is the probability of this happening by chance?  $\implies$  Statistical problem.

Null hypothesis  $(H_0)$ , both means are equal and the difference is due to chance.

Instances of this problem are pervasive in data science: does an upgrade increase user engagement?, is the new algorithm generating more revenue? is the new treatment effective? etc.

Two approaches: *i*) Statistics 101 and *ii*) computational method.

#### **Statistics 101**

• *t*-test

• *t*-test

• Test statistic: 
$$t = rac{ar{X}_1 - ar{X}_2}{s_p \sqrt{2/n}}$$
, where  $s_p = \sqrt{rac{s_{X_1}^2 + s_{X_2}^2}{2}}$ 

• *t*-test

• Test statistic: 
$$t = rac{ar{X}_1 - ar{X}_2}{s_p \sqrt{2/n}}$$
, where  $s_p = \sqrt{rac{s_{X_1}^2 + s_{X_2}^2}{2}}$ 

• Which under the null hypothesis follows a Student t distribution

$$f(t)=rac{\Gamma(rac{
u+1}{2})}{\sqrt{
u\pi}\,\Gamma(rac{
u}{2})}\left(1+rac{t^2}{
u}
ight)^{-rac{
u+1}{2}}$$

- *t*-test
- Test statistic:  $t = \frac{\bar{X}_1 \bar{X}_2}{s_p \sqrt{2/n}}$ , where  $s_p = \sqrt{\frac{s_{X_1}^2 + s_{X_2}^2}{2}}$
- Which under the null hypothesis follows a Student t distribution

$$f(t) = rac{\Gamma(rac{
u+1}{2})}{\sqrt{
u\pi}\,\Gamma(rac{
u}{2})}\left(1+rac{t^2}{
u}
ight)^{-rac{
u+1}{2}}$$

•  $\nu = \text{degrees of freedom}$ 

- *t*-test
- Test statistic:  $t = rac{ar{X}_1 ar{X}_2}{s_p \sqrt{2/n}}$ , where  $s_p = \sqrt{rac{s_{X_1}^2 + s_{X_2}^2}{2}}$
- Which under the null hypothesis follows a Student t distribution

$$f(t)=rac{\Gamma(rac{
u+1}{2})}{\sqrt{
u\pi}\,\Gamma(rac{
u}{2})}\left(1+rac{t^2}{
u}
ight)^{-rac{
u+2}{2}}$$

•  $\nu = \text{degrees of freedom The degrees of freedom } \nu$  is approximated using the Welch–Satterthwaite equation

$$\nu \approx -\frac{\left(\frac{s_1^2}{N_1} + \frac{s_2^2}{N_2}\right)^2}{\frac{s_1^4}{N_1^2\nu_1} + \frac{s_2^4}{N_2^2\nu_2}}$$

- *t*-test
- Test statistic:  $t = rac{ar{X}_1 ar{X}_2}{s_p \sqrt{2/n}}$ , where  $s_p = \sqrt{rac{s_{X_1}^2 + s_{X_2}^2}{2}}$
- Which under the null hypothesis follows a Student t distribution

$$f(t)=rac{\Gamma(rac{
u+1}{2})}{\sqrt{
u\pi}\,\Gamma(rac{
u}{2})}\left(1+rac{t^2}{
u}
ight)^{-rac{
u+2}{2}}$$

•  $\nu = \text{degrees of freedom The degrees of freedom } \nu$  is approximated using the Welch–Satterthwaite equation

$$\nu \approx -\frac{\left(\frac{s_1^2}{N_1} + \frac{s_2^2}{N_2}\right)^2}{\frac{s_1^4}{N_1^2\nu_1} + \frac{s_2^4}{N_2^2\nu_2}}$$

- *t*-test
- Test statistic:  $t=rac{ar{X_1}-ar{X_2}}{s_p\sqrt{2/n}}$ , where  $s_p=\sqrt{rac{s_{X_1}^2+s_{X_2}^2}{2}}$
- Which under the null hypothesis follows a Student t distribution

$$f(t) = \frac{\Gamma(\frac{\nu+1}{2})}{\sqrt{\nu\pi}\,\Gamma(\frac{\nu}{2})} \left(1 + \frac{t^2}{\nu}\right)^{-\frac{\nu+2}{2}}$$

#### Skeptic: I don't believe this!

•  $\nu =$  degrees of freedom The degrees of freedom  $\nu$  is approximated using the Welch–Satterthwaite equation

$$\nu \quad \approx \quad \frac{\left(\frac{s_1^2}{N_1} + \frac{s_2^2}{N_2}\right)^2}{\frac{s_1^4}{N_1^2\nu_1} + \frac{s_2^4}{N_2^2\nu_2}}$$

#### **Computational method**

| Beer                 | Water               |
|----------------------|---------------------|
|                      |                     |
| 27 19 20             | 21 19 13            |
| 20 23 17             | 22 15 22            |
| 21 24 31             | 15 22 20            |
| 26 28 20             | 12 24 24            |
| 27 19 25             | 21 19 18            |
| 31 24 28             | 16 23 20            |
| 24 29 21             |                     |
| 21 18 27             |                     |
| 20                   |                     |
| $mean_{beer} = 23.6$ | $mean_water = 19.2$ |

 $mean_{beer} - mean_{water} = 4.4$ 

| Beer              | Water                  |
|-------------------|------------------------|
|                   |                        |
| 21 19 20          | 27 19 27               |
| 15 23 17          | 22 20 22               |
| 21 24 31          | 15 22 20               |
| 26 28 20          | 12 24 <mark>2</mark> 4 |
| 27 19 25          | 23 19 27               |
| 31 24 28          | 16 <b>21</b> 20        |
| 24 29 21          |                        |
| 17 18 27          |                        |
| 20                |                        |
| $mean_{beer} = X$ | $mean_{water} = Y$     |

$$mean_{beer} - mean_{water} = -0.9$$













We have constructed the empirical distribution of the test statistic  $\mathsf{mean}_{\mathsf{beer}} - \mathsf{mean}_{\mathsf{water}}$ 

We have constructed the empirical distribution of the test statistic  $\mathsf{mean}_\mathsf{beer} - \mathsf{mean}_\mathsf{water}$ 

How likely is it that we arrived to a value of 4.4 by chance?

We have constructed the empirical distribution of the test statistic mean<sub>beer</sub> – mean<sub>water</sub> How likely is it that we arrived to a value of 4.4 by chance? Easy,  $p = \frac{\text{number of times that the statistic} \ge 4.4}{\text{total number of permutations}}$ 

This is the exact definition of *p*-value!

## In this experiment, p-value = 0.0004 and so the null hypothesis can be rejected.

OPEN access Freely available online



### Beer Consumption Increases Human Attractiveness to Malaria Mosquitoes

#### Thierry Lefèvre<sup>1</sup>\*, Louis-Clément Gouagna<sup>2,3</sup>, Kounbobr Roch Dabiré<sup>3,4</sup>, Eric Elguero<sup>1</sup>, Didier Fontenille<sup>2</sup>, François Renaud<sup>1</sup>, Carlo Costantini<sup>2,5</sup>, Frédéric Thomas<sup>1,6</sup>

1 Génétique et Evolution des Maladies Infectieuses, UMR CNRS/IRD 2724, Montpellier, France, 2 Caractérisation et Contrôle des Populations de Vecteurs, IRD/UR 016, Montpellier, France, 3 Institut de Recherche en Science de la Santé, Bobo-Dioulasso, Burkina Faso, 4 Laboratoire de Parastologie et d'Entomologie Médicale, Centre Muraz, Bobo-Dioulasso, Burkina Faso, 5 Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale, Yaoundé, Cameroun, 6 Institut de Recherche en Biologie Végrélae, Université de Montréal, Montréal, Canada

#### Abstract

Background: Malaria and alcohol consumption both represent major public health problems. Alcohol consumption is rising in developing countries and, as efforts to manage malaria are expanded, understanding the links between malaria and alcohol consumption becomes crucial. Our aim was to ascertain the effect of beer consumption on human attractiveness to malaria mosquitoes in semi field conditions in Burkina Faso.

## Now its your turn!

Go to the github repository for lecture 2 https://github.com/dsl2l2017/lecture\_2 Do the third and last exercise.

#### References i

## Marti Anderson and Cajo Ter Braak. Permutation tests for multi-factorial analysis of variance. Journal of Statistical Computation and Simulation, 2003.



Permutation tests for univariate or multivariate analysis of variance and regression.

Canadian journal of fisheries and aquatic sciences, 2001.

#### 🔋 Phillip Good.

**Permutation, Parametric, and Bootstrap Tests of Hypotheses.** Springer Science & Business Media, 2013.  Thierry Lefèvre, Louis-Clément Gouagna, Kounbobr Roch Dabiré, Eric Elguero, Didier Fontenille, François Renaud, Carlo Costantini, and Frédéric Thomas.
 Beer consumption increases human attractiveness to malaria mosquitoes.
 PloS one, 2010.