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What are the most important methods data science?
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Logistic regression

Pillar of supervised learning. One of the most common methods

Two motivations

e As a probabilistic model.

e Mathematical optimization.
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Probabilistic model




Probabilistic view

Motivation: classification problem with two classes.

Classes = "-1" and "1", which represent outcomes such as pass/fail,
win/lose, alive/dead or healthy/sick, etc.

A\ Despite its name, logistic regression is a model for classification and

not regression.
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Probabilistic view

Motivation: Cancer / no cancer as a function of biomarker.
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Probabilistic view

Motivation: Cancer / no cancer as a function of biomarker.
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Probabilistic view

Motivation: Cancer / no cancer as a function of biomarker.

5 1.0}
e
S 0.8}
O
5 0.6}
>
2 0.4}

e}
©0.2f

[e) ; : : : :

6 0.0F 0000000 0 Q-0 i

o 1 2 3 4 5 6
concentration of biomarker

Goal: Given new data, estimate the probability of having cancer
<= estimate P(Y = 1|X)
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Probabilistic view

One popular model for P(Y = 1|X) 10
is the logistic model, 038
_06
® 0.4
0.2
P(Y — y,|X = X,') = O'(y,'(X,-T61 aF BO)) A6
-4 =2] 0 2 4
. exp(t) ¢
tho(t) = —————
with o(t) 1+ exp(t) The logistic function o(t)

In the 1D case we have 2 degrees of freedom, (1, By that control the
slope and intercept of the approximation.
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with o(t) 1+ exp(t) The logistic function o(t)

In the 1D case we have 2 degrees of freedom, (1, By that control the
slope and intercept of the approximation. In the p-dimensional case, we
have p + 1-degrees of freedom, as 5; € RP, 3, € R
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Inference

The coefficients 1, B9 can be estimated as the ones that maximize the
likelihood given the current data {(y1,x1),- .., (Xn, ¥n)}-

imize £(B1,50) = | | P(Y = yi| X = x;
maél"réllze (61, Bo) ,1;[1 ( yil x;)
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Inference

The coefficients 1, B9 can be estimated as the ones that maximize the
likelihood given the current data {(y1,x1),- .., (Xn, ¥n)}-

imize £(B1,50) = | | P(Y = yi| X = x;
maél"réllze (61, Bo) ,1;[1 ( yil x;)

Although for numerical reasons we rather minimize the minus

log-likelihood

n

migligoize —log(4(51, Bo)) = Z —log(P(Y = yilX = xi)) (1)

= log(1 + exp(—yi(x B1 + Bo)))  (2)

i=1
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Generalization

This approach can be naturally generalized to K classes.

Pr(Y; = 1 —eﬁl
h=D= 1+Ek , e?
Pr(Y;=2) = —eﬁz @)
1+Zk ., eb
...... (4)
Pr(Y, = K 1) = — 2 (5)
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Application

Lets use this to predict the future!
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Application

Lets use this to predict the future!

Use the data from the religion dataset to predict how religious beliefs will
evolve after 2017
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Application

Lets use this to predict the future!

Use the data from the religion dataset to predict how religious beliefs will
evolve after 2017

Suggestion: use scikit-learn’s LogisticRegression class with
multi_class="multinomial’. Use as features the year and cohort. The
model can predict probabilities with method predict_proba.
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Application

To predict, use the same data but with year and cohort shifted
accordingly.

Religious affiliation,
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Optimization point of view




Optimization point of view

Setting. We have some data {(x1,y1),-.-(Xn,¥n)},¥i € {—1,1}, and we
want to find the prediction rule §; = sign(x,’ 81 + Bo) that makes less
mistakes.

n
T 1{y; iT + <0
m|g1|’r/T310|z ; {}/ (X b1 »30) }

"Mistake function" 1{t < 0}

o = N w H (]
T T T T
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Optimization point of view

/A Problems!

e Objective function is
discontinuous

e Gradient is zero almost
everywhere = not amenable

to gradient descent

e NP-hard problem in number of

dimensions!
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Optimization point of view

One way out: take a smooth upper bound on the "mistake function”

o ¢ = log(1 + exp(—t))
e Same function that appeared in
minimization of log-likelihood

(Ea (2)).

5
4l
3
2

i = 1 = logistic loss
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Optimization point of view

One way out: take a smooth upper bound on the "mistake function”

5

o ¢ = log(1 + exp(—t)) a
e Same function that appeared in 3
minimization of log-likelihood 2
(Eq (2)). i

0

i = 1 = logistic loss

—> optimization becomes a convex and smooth problem.
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Optimization point of view

Probabilistic approach Optimization approach
e Allows to interpret output as e Makes links with other methods
probabilities. such as SVMs and neural
networks.
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